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ABSTRACT

v

»
This Semiannual Technical Sumamary covers the
' period 1 October 1981 through 31 March 1982. It
describes the significant results of the Lincola
Laboratory Multi-Dimensional Signal Processing
Research Program sponsored by the Rome Air Devel-
opment Center, in the areas of image asegmenta-
tion, classification, target detection, and adap~
tive contrast enhancemeat.
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MULTI-DIMENSIONAL SIGNAL PROCESSING RESEARCH PROGRAM

1. INTRODUCTION AND SUMMARY

The Lincoln Laboratory Multi-Dimensional Signal Processing Research
Program was initiated in FY 80 as a research effort directed toward the
development and understanding of the theory of digital processing of multi-
dimensional signals and its applications to real-time image processing and
analysis. A specific long-range application is the automated processing of
aerial reconnaissance imagery. Current research projects which support this
long-rasnge goal are image modeling for segmentation, classification, and
target detection, techniques for adaptive contrast enhancement, and multi-
processor architectures for implementing image-processing algorithms. In
this Semiannual Technical Summary we shall describe in detail our work to
date on the detection of anomalous areas using an image-modeling approach.-

In the area of adaptive contrast enhancemeat we have recently completed
the initial development of a softvare module for implementing the algorithns
previously developed under this program. Thia software module wae writtea in
the programming language "C" to facilitate its tranafer to the RADC
Autowmatic Feature Extraction System (AFES), which utilizes a UNIX-based
operating system. We are currently in the process of transferring this
softuare wodule and its documentation to RADC/IRRE for testing.

We have begun the paper development of a strawman multi-processor
architecture for image~processing applications. We have been looking at
generic image-processing operations such as linear filtering, median
filtering, nonlinesrities, segmentation, edge detection, and Pourier
tranaformation. Based on coperations such as these, it seems that
straightforward data partitioning techniques can be used in wost cases to
£it the operation into a multi-processor implemantation. We plan to
continue refining our architectural spproach during the remainder of FY 82 to
incorporate other image operations and to address the problems of
programmability, I/0, inter-processor cavwications, and required

perforaance levels,




The remainder of this report is devoted to a comprehensive treatment of
both our theoretical and empirical results in the area of target detection

within aerial reconnaissance imagery.

2. TARGET DETECTION BY PARAMETER TRACKING

This component of our research relates to the problem of detecting
targets (i.e., anomalous areas) in aerial photographs and is an outgrowth of
our work in image modeling, segmentation, and classification. We can loosely
define the target-detection problem as the detection of wman-made objects in a
textured background (e.g., trees, grasa, fields, etc.).

Usually, in detection theory the target (or signal) is added to the
background (or noise), and filtering procedures are well established for
increasing the signal-to-ncige ratio. In image processing, however, the
target pixels replsce the background pixels., Motivated by this observatiom,
we model an serial photograph as a 2-D random process which is the output of
a continuously space-varying linear filter, We agsume that a textured
background (i.e., the 2-D filter representing the background) is slowly
varying, while an anowalous arvea of the image reflecte a quick chaunge in the
filter characteristica,

One possible interpretation of the target-detection probleam then
consiets of detecting large changes in 2-D filter parameters. That iwe, we
"track" the parameters of the model; when a target area is reached, the
parameters tend to change quickly, indicating the presence of a target.
Furthermore, we shall asaume no knowledge of the target or background except
that the target's spectral characteristics differ from that of ita
background. In particular, the targat may have high or low frequeuncies
compared with the background and/or a different wmean ur variance then the
background. This assumption differs from that of wmany available target-
detection algorithms which rely on only & change of intencity and/or

vaviance of the target from the background.




Our preliminary results in this approach to target detection are
discussed in the previous Semiannual Technical Summary,1 where we addressed
this problem in one dimension to develop the theory and our intuition before
extending the results to the two-dimensional problem,

In Sec. 2.1, we shall review and elaborate on this one-dimensional
theory. In particular, we derive nonrecursive and recursive least-squares
procedures for parameter tracking and detection when the data are seen
through a finite-extent sliding window. From these derivations, we see that
the recursive approach is preferable (computationally) and &leo gain further
insight into the results of Ref. 1. Furthermore, these results lead us to
gome extensions of Ref. 1 for the one-dimensional problem which appear to
hold promise for the two-dimensional case. Specifically, we introduce the
use of pradiction error in detecting ancmalous areds of a signal., A target
is detected when a large error occurs in predicting a sample of the signal
from its past {i.e., causal prediction). Almost always, the prediction error
compares favorably with the change in filter parameters when used ia
detecting small anomalous areas of & aignal. We alao investigate the
prediction of a signal asample from its esurrounding values (i.e., noncausal
prediction). Such an approach (noncausal) to detection way be particularly
useful in a 2-D context where no directionality is assumed,

In Sec. 2.2, we extend a subset of our l-D resulte to develop a 2-D
target-detection algorithm which relies oo tracking the paremeters of a
continucusly space-varying 2-D filter, 4&s in the 1-D case, we eéxplove both
recursive and nonrecursive structures for least-squares parameter estimation.
Unlike the 1-D case, however, we shall see that it may ba desirable
(ccmputationally) to perfora 2-D least~squares directly (i.e.,
nonrecureively) at each pizel rather than racureively., Nevertheless, oux
derivation of a 2-D recursion lends iansight iatoe the nature of filtex
parameter changes 2cross an image.

As before, detection of an ancmalous area of an image is based cn
changes in the estizated filter parameters, We shall show that, becsuse of a
lack of image directionality, the cheice of the wask of the 2+D filter model
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can play an important role in accurate 2stimation of the parameters (and thus
their change used in detection). We shall illustrate such variations on a
baseline algorithm by detecting small targets {e.g., 4 x4, 3 x 3, and 2 x 2
pixels) within RADC image data. Finally, we comment on the extemsion to 2-D
of the use of causal and noncausal prediction error in detection. In
particular, we conjecture that the 2-D noncausal prediction error may
provide a sigunificant improvement over the present algorithm (based on
parameter changes) in detecting small objects in a cluttered background such
as a forested area. Consequently, investigation of various 2-D prediction-
error functions will be a large cowmponent of our future research in target
detection,

2.! Target Detection in One Dimension

Here, we present an algorithm for target detection in l-D, Our
analysis is used as a stapping stone to the developwent of an analogous 2-D
algorithm in the following sectiom.

2.1.1 Noarecursive Paremeter Estimalion
Suppose that a 1-D sequence s(n) follows an autoregrassive model, aud

thue is generated by a difference equation of the form

s(a) = E a(k) s(n = k) + w(n) (1)
kel

vhere w(n) is zero-mean white noise. Our objective is to estimate froe s{a)
the wmodel parameters a(k) for k € {1,P]., Further, suppose that we have
available a segment of s(n) for n in the interval [-P « ag,nl, that is,

ay -~ ng *+ P + | data points, We then define the error e(n) over the
interval {ng,n;] (which ve assume is N points ian duretion, i.e., R =

ap - ng + 1) by

e(a) = s(n) - § a(k) s(n - k) nE€ [no,nl] . (2)
k=]
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e(n) can be interpreted as the error in predicting s(n) from its past
P samples. Our goal then becomes to minimize the sum of the squared

prediction errors given by

Y

Ela = ] o) . (3)
n=n 0

To accomplish this minimization, we first place the problem in a matrix

algebra framework. In particular, we define the vectors 0 and @ by

"s(no) 7] [ a(1)]
s(ng + 1) a(2)
g e . N a - . P
_s(nl) i _a(?)J y

and the matrix § by

L4

- P
”a(ng -1 slng - 2y . .. sln, - P) B
s(ng) s{ag ~ 1) . . . elug-? -~ 1)
g = . H

L-(nl =1 enp =2) . . . sl{my -P)

Thus, the error E[n;] in Eq. (3) becomas

Eln,] = [Sa = o} [Sa - o (4)
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where T denotes matrix transpose. Differentiating Eq. (4) with respect to

a to find the least-squares error, we obtain?
T .-1 T
a=[s8] So (3

where STS is a P x P matrix (P being the order of our model). The solution

Eq. (5) is often referred to as the covariance method of linear prediction.

Thus, the inverse of a P x P matrix is required to compute a. This will
require on the order of p3 operations.?

Suppose now that we wish to obtain an estimate of & for many N-point
segments and, in particular, over the intervals {(ng + m, n) + u] vhere o = 0,
1,2,... . In the next section, we derive a method of updating the
coefficients a without recomputing the matrix (STS)-I.

2.1.2 Recursive Parameter Estimation®

Lez us suppose that a new data point is given [i.e., a(n) + 1)] and that
one is eliminated [i.e., 8(ng)] sv that cur new data set runs from ng = P + |
to np * 1. The sum of the squared errors over the inkerval {ng + 1, ny ¢ 1]

then becomas

Blul ¢ 1] = E[nll + ez(nx + 1) - e2(ny) (6)

3

where e{n; + 1) is the error inm predicving the new sample s(n1 + 1)

P
e(n) + 1) = sln,; » D -1 ek s, + 1 - k) (79)

k=)

“The derivation in this section parallels that of Ref, 3, vhere the data set
incresses with time.
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and e(ng) is the error in predicting the old sample s(ag):

P
e(no) = s(no) - k§1 a(k) s(n0 - k) .

In matrix form, we can write Eq. (6) as

Eln; + 1} = E(n;] + [da = s{n; + 1]2 - [ca - 8(ny)]?

where
r— o
s(a;) B slng = 131
s8(ny - 1) alng - 2)
a7 - . p ¢t w . P
L.e_!‘(m + 1 -P) s{ng ~ P)

Differentiating Eq. (8) with respect to a, we obtain?
T - T T
g« [55§~ cTc + de} { (e +d u{nx + 1) - crs(no)}
Now, we caa simplify Eq. (9) ae

a= [Re chl'l ISTQ * GTOI

vhere
e P e - P
4 T 4 f
G| e} 2 F e 2
Le 4 <

()

(8)

9)

(10)

f:;:;;,,;



and

S(nl + 1)
Q =
-8(ny)

and where R = STS.

We wish to avoid direct computation of the matrix inverse
in Eq. (10).

To accomplish this, we rely on the matrix identity given by

(A + BCl™l = A=l - A~1p [ca-iB + 1]~} ca~l

(11)
. . . \ . T .
where 1 is the identity matrix., Letting A= R, 3 =G, and C = F 1n
Eq. (10), we obtain
- - -1 -1 _ - T T
a = [R L. g 1GT(FR G+ 1) ! FR 1] [S'a+6Q . (12)
Note that R~! is assumed known from the previous computation of g. At this

point, for clarity, let us change notation so that @ becomes a[n; + 1],

i.e., the filter parameters estimated within the interval [ng + 1, ny + 1].
Then, Eq. (12) can be written as

- - - -1 __~1.T
a[nl + 1] =R 1STo -R 1GT(FR IGT + 1) 1 FR 1S ]

s 16T - v T tet - 7! RGN . (13)

-1 T - . .
, Noting that aln;] " R 'S ¢ and defining a "gsin matrix" K as

K= R GhPR Ve « 1) (14)

we have
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a[n1 + 1] a[nll - KFa[ul] + R-lGTQ - RFRWLGTQ

= a[ul] - KFa[nll

-1 - (- - - ’1' -
s ReEr™ e+ 7 et ¢ g - kR 6T

= aln] - Kra[n] + kre tT + g - kR CeTq
= a[nll - RFa[nll + KQ . (15)
Finally, we have
rlng + 1] = aln,] + K(Q - Fa[ull) (16)

whict provides a recursive means of updating aln}.

How lct us consider the gain matrix K. The matrix ccaputation involved

in finding K can be represeuied as

“@Por Do s D e

2
. [R L [GI] 1.7, Z]*l ) (an

Thus, we need to compute the ioverse of a matrix (i.e., FR-lGT + I) which is
of size 2 x 2, in contrast to the direct approach which requires the iuverse
of a P x P matrix [entailing O(P?) operations]. Note from Eq. (12) that R‘I
cau also be recursively updsted ss

- - -1
R e R b KPR (18)

vhich requires some additional matrix multiplications of order P2,
Consequently, the bulk of the computation lies uot in the matrix inversioa,

but in watriz multiplications of order P2,




2.1.3 Detection Functionala

It was pointed out in the introduction to Sec. 2 that one procedure for
detecting anomalous areas of a signal is to detect abrupt changes in the
parimeter estimates of the time-varying filter. If the model parameters of a
stationary background are known, then one obvious choice of a destection
functional is the wmean squared difference between the known background
parameters and the parameter estimates. If the data deviate from the
background (i.e., a target is present), this mean squared error should
suddenly change to account for the large error that would be encountered in
predicting the first few points of the new data set if aln; + 1] didn't
change much frow a[n;]. Examples of such abrupt changes in this functiomal
were illustrated in Ref. 1.

This section describes and demonstrates with examples alternative
detection functionals which do not require background information or

agsumptions of statiouarity.

The Coefficient Change Functionsal:~ To free ourselves from a priovi
information about the background and the ststionarity assumption, we first

considered a detection fuunctional of the form:
Cln,] = (aln, + 1] ~ aln. 1T Caln, + 1] - ala. ) (19)
1 1 1 1 1

which is the mean squared diffarence between two consecutiva pavsmetev
estimates. We might expect Clnj) to jump only when our sliding wiudow first
hits the target and vhen the window juat leavee the target. Somathing
similacr to Cln)} vas considered by Dove and Oppenheim" who referred to

Eq. (19) as the coefficient change functionsl.

Although this functional has been used with good success in both 1~D and
in extensions to 2-D, a potential problewm exista, This change functionsal is
somatimes not responsive to swall excent targets in a highly cluttered
background (e.g., trees). Note that the paramecer estimates vely on the

. ‘ < T
correlation function R ® §°S. A small extent target may not change R




sufficiently to generate a corresponding change in filter parameters.
However, such absence of change in the parameters may actually aid a
datuccion functional based om prediction error - as we show in the following
section.

The Prediction Error Functional:- Let us return to Eq. (16) which we

new write as
afn, + 1] = afn] + ke[nll (20)
where

e[nll = Q - Fa[nll

~8(n1 + 1) d
- - — ﬂ[(\l]
-8{ng) “¢

-

Pa(nl + 1) - daln,]

‘a(ng) + caln]

e

_&l[nll.]

- o (21)
[ aylny; |

trcm Eqe. (7) and (B), we see that ey{a) in Eq. (21) is the error in
predicting the new signal s&ple with the old parameters. When this new
signsl sample e(ny + |) ia a member of an snomalous area, we expect Lhe ervor
in predicting s(~} + 1) to change abruptly when the old set of coeriicients
aln;] is based on duta not encowpacsing the tirget. Hote that, although

the coefficient change sluy + 1] - alny] is & fuuction of ej(n) (i.e.,

afny; + 1] - aln;] = Keln;]), the time-varying gain term K and e,{q; may drowe

out the changa in e)(n).

a1
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It is possible to generalize this notion of prediction error for target
detection. In particular, e;{n) in Eq. (21) represents a causal prediction
error, i.e., s(n] + 1) is predicted from the past P values of s(n). Clearly,
it is possible to formulate the least-squares estimation problems of
Secs. 2.1.1 and 2.1.2 in terms of noncausal prediction of a sample of s(n)
from its surrounding neighbors, i.e., a smoothing of s(n) from points to its
left and right:

P
s(n) = J a(k) s(n - k) + w(n) . (22)

k#o?

We have applied such noncausal detection to 1-D with success. Noncausal
prediction wmay be particularly useful in 2-D detection where there exists no
apparent directionality. In the next section, we compare by example the
various detection functionals discussed in this section.

2.1.4 Exanmples

Consider a sequence s(n) of the form:
s(n) = 0.958(n ~ 1) + win) (23)

vhere w(n) is zero—meaw white noise. A sample function of s(n) is shown in
Fig. 1. A 4~-point high-frequency target at n = 90, 91, 92, and 93 is also
shown there. Figure 2(a) depicts the coefficient estimate based on a

16-point window, and Fig. 2(b) shows the corresponding coefficient change
Cln]. Note that a global change in mean aud other local phenomena in the
background hae been emphasized over the target. Figure 2(c) depicts the
squared prediction error, ef[nl; the target is clearly detected.

in a second example, we analyzed a cross section of pure tree data from
the field-tree RADC image. Figure 3 depicts this cross section with its oean
removed (see Sec.2.1.5), with & 3-point constant-level target imposed at n =
64, 65, and 66, A S-pole model was ssswmed and a 16-point eliding window
vas veed. C[n] and ef[n] are shown in Figs. 4(a) and (b), respectively.
Note that ef[u) is without the false alara of C{n].

13
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Fig. 2(d). ¢Cln] for Fig. 1.
TARGET
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Fig. 2(c). et[u] for Pig. 1.
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Fig. 3. Cross section of RADC data.
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Fig. 4(a). Cla) for Pig. 3.
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TARGET
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n

Fig. 4(b). af[n] for Fig. 3.

Consider again the sequence generated by B8q. (23) in Fig. 1, but now

wvhero we sssuze a model of the form
s(n) » a(l) s(n ~ 1) + a(2) s(a + 1) + w(n) (24)

i.¢,, s(n) is & function of its two nearest adjacent neighbore. FPigure 5
depicts the noncausal prediction error corresponding to the signal in Pig. |
and wiiich uses a l6-point sliding window, Vinally, the noncausal model
Bq. (24) was used to generate a prediction error from the image croes section
given in Fig., 3. The prediction ervor is depicted iu Pig, 6. The target is
tlearly detected in both cases.
2.1.5 Removal of the Mean Level
It should be noted that the image crose section of Fig. 3 contains a

nonzero mean which violates our wodel Egs. (1) and (22) where zevo-wean wvhite

16
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FPig. S. ef[n] (noncausal) for Fig. 1.
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20000 1 TARGET B
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10000 -
0 64 128
n
Fig. 6. ef[u] (noncausal) for Fig. 3.
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noise is assumed to drive a linear system. One approach to addressing a
time-varying nonzero-mean level is to incorporave it within our model so

that we estimate the mean as well as the parameters a(k):

P
s(n) = § alk) s(n- k) +wln) +C (25)
k=1

where C is a mean level added to the input w(un). The output will then
contain a nonzero wmean.

Now, if we perform least-squaree estimation, we find that the best
estimate of the a(k)'s is given approximately by (this derivation parallels
that in Sec. 2.1.1):

2.-1 , 1T 2
a» (STSc - ms) (Sao - ma) (26)
where N is the data length and

%

a = 1 s(a)/N o @n

n"no

which is an estimste of the mean of the output. The best estimate of C ia

given approximately by

P
C=um |l - ] alk)| . (28)
k=1

Equation (26) simply implies that we first estimate the mean of s(n) through
Eq. (27), subtract it frow s(n), and then solve Eq. (5) of Sec. 2.1.1. To
find C, we "inverse filter" the wean at the ocutput to obtain the mean at the
input.

Removal of the mean may not only lead to more gccurate determination of
the a(k)’'s, but aleo provide an ddditional parameter in our functional for
target detection. We shall discuss this possibility in the next sectioa.

18




2.2 Target Detection in Two Dimensions

One obvious approach to extending our 1-D vesults to 2-D target
detection is to apply 1-D recursive least-squares estimation along rows or
columns of an image. Of course, such a procedure is not "optimal' since the
correlation of a sequence s(n,m) is considered in only ome direction. We
have found empirically two problems with this approach: (1) various
detection functionals used have a large dynamic range (i.e., the functional
exhibits little consistency from line to line), and (2) an undesirably long
window length (along each row or column) may be required, resulting in
excessive "memory" of the functional.$:®

In this section, we describe a least-squares procedure which invokes
rows and columns simultaneously, i.e., we address the 2-D problem directly.
After considering both nonrecursive and recursive estimation, we devise a 2-D
target detection algorvithm which ias a significant improvement over its line-
by-line counterpart. We demonstrate the algoritim by applying it to the
detection of anomalous areas within aerial photographs obtained from RADC.

2.2.1 Nonrecursive Parameter Estimation

Conceptually, 2-D least-squares estimation is similar to the l-D case.

We begin with a 2-D sequence which follows an autoregressive model, so it is

given by a difference equation of the form

s(n,m) = 11 atik) sln ~ j, &~ k) + win,m (29)
3 k
(j,%)¢(0,0)

vhere vi(n,n) is zero-mean white nciee. Por the moment, we shall assume that
the prediction coefficients a(j,k} fall within a (P x Q) firat-quadrant
mask, as illustrated in Fig. 7. For simplicity, we limit our derivatioas to
this clase of prediction masks, although it is clesrly applicable to mors
general mask shapes. In particular, we shall iovestigate sacond-quadrant and
nonaymmetric half-plene wasks in Sec. 2.2.5,

Qur objective is to estimate from s(n,m) tha model parsmeters a(j,k) for
j=0,1,...,P and k = 0,1,...,Q, with j = k # 0. PFurther, let us suppose

19
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Fig. 7. A first-quadrant quarter-plane mask for predictor
coefficients ala,n].
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that we have available a square block of data, i.e., s(n,m) for (a,m) € [-P +

ng,ny] x [-Q + my,m] (see Fig. 8). We then define the error e(n,m) over the

region I, given by I = [ny,n1} x [mg,m1], «s

P
e(n,m) = s(a,m) - § J a(j,k) sa~jm=-% (am el . (30)
j=0 k=0
Juk#0

Our goal becomes to minimize the sum of the squared errors given by

n, m
1 1l 2
El“l'mll - 7 T e“tam) . (31)

n-no WG

The approach we take is to transform the 2-D problem to a 1-D problem se
that a4 1-D lesst-aquares solution is applicable. Kote, however, that we will
still have solved the 2-D least~squares problem, In particular, wve wish t¢c
tranefore Eq. (31) into a form similar te the 1-D error expression in
Eq. (4). To accomplish thie transformation, we define the tollowing vectors

’(“l'mll and g by
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i a(l),l) A i 3(“0,“10) ] ‘}
a(n, 2y | s(ng, my + 1)
a(0,0! | s(no,ml)
a(l,0) slng + 1, my)
a(l,1) s(og + 1, my ¥ 1)
aln,,m] = e (PQ-1) o= . (r@q - (32)
a(1,q) s(n0 + 1, ml)
{ " »
a(p,0) aln,,m;)
a(P,1) s(n), my + 1)
| a(P,Q)d ‘: La(nl.ml) R ‘&

; and the matrix S by

-+ PQ - | —

[~ T
Ag
Ay
§ = . N2 (33a)
T AT
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where

-y -t .
[slng + § -0, lo-l'r...t(n‘,Oj-n, 10‘0)] coa fslag ¢ j =P, mg~0Y.islng ey - P, n°~0)|
la{ng & j -0, my+ L = 1D.alag+ j=0, -“'100)] (l(n°0j~P. -ovl-O)....(nooi-P, -°0l°0)]
Aj‘ . N
stng v j <0, & = Dsl-ge j-0,8 -l coo dslng ¢+ 5 - P, m = 0)..slng+ j-P a - Q) l

(33b)

and where we hava assumed the known data segment to be of extent N x N. Note
that ¢ is a vector cunsisting of the concateunation of the rows of s(u,m) over
I, aln),m] is a vectov cousisting of the concatenation of the rows of

a(j,k) for (j,k) € [0,r] x [0,Q] with j = k # 0, and £ is a matrix which
consists of the concatenation of rows of various sub~sequences of the known
8(an,w) required in predicting 2ach value of s(n,m) over I.

Therefore, we can write Eq. (31) as

n m
1 1 2
E[nl,mll - ] ) e“(a,m)
n%a, mea,
= (sala ] - 0¥ (sala @] = 0) . (34)

From the similarity of Bq. (34) with Bq, (4), we can write the solution to
winimizing Eq. (34) with respect to al[n;,m;) as

slajm) = B 50 (358)

wvhere

R = sTs . (35b)

$3
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Note that the matrix R is of extent (PQ - 1) x (PQ -~ 1) and difficulty in its
inversion is dependent on the model order, not on the size of the known block
of data.

In particular, since R is generally not Toepltz, its inversion will
require on the order of (PQ)3 operations (i.e., multiplications withinm, for
axample, Cholesky's decomposition algorithmz). It should be pointed out that
the computation of R~! can probably be reduced by considering its block-like
structure resulting from the conversion of a 2~D problem to a 1-D problem.
Thus, assuming P,Q << N, the bulk of the computation is embedded within
forming R = STS which requires on the order of N* operations.

2.2.2 Recursive Parameter Estiwmation

Let us suppose now that we wish to estimate the parameters a[n),m)] over
a large data set. Our goal in this section is to devise a recursive
procedure for updating the parameter estimates over the 2-D plane without
vrecomputing the inverse of R. Unlike the 1-D problem, many ways exist to
recurse in the 2-D plane, i.e., vertically, horizontally, diagonally, etec.

In all these procedures, entire rows and/or columns of data enter and exit
the view of a 2-D sliding window. An alternative to this class of recuraions
is the class of "snake recursions" which allow vnly one or a few aignal
sanples to enter and exit the window's field of view. Such recursions may
not only reduce computation, but provide greater vesolution in detecting
smill-extent 2-D targets. For the present, however, we have investigated the
vow (column) recursion, and its derivation is the primary emphasis of this
section. In the conclusion of this section, however, we briefly describe one
point-by-point vecursion, its cowputational advantages, and its potential for
high~resolution detection.

Now let us suppose that we add a new row of data, i.e.,, s(n) + |, w) for
@ e [-Q + my, m;] and eliminate the known row at n = ~P + n, (see Fig. 9).
Our goal is to generate the coefficient estimates a(n; + 1, m] based on the
new row of data and the old coefficient estimates “[“X'mll‘ The now error

of interest is given by:
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Fig. 9. Data update used in 2-D recursive least squares.

™ ?|
Ela) + 1, o] = E[“l'mll ) ez(no,m) + 7 ez(n1 + 1, m) (36)
LI w,

vhere e(n; + 1, w) is the error in predicting the nev row s(n; + 1, m):

e(n1 ¢+ l, m) = °(“1 + 1, m) - a(j, k) a(nl «1 -3, o~k (3D

0)

P Q
L1
j=0 k=0
(3,%)#00,

and where e(n;,m) is the ervor in predicting the old row:

P Q
e(no.m) - a(no,m) - 1 1 aiw) a(uo -j, m=-k) . (38)
j%0 k=0
(j,k)#(0,0)
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In matrix form, we can write Eq. (36) as
T
E[nl + 1, mll = E[nl,mll + (Da[n1 + 1, mll - g (Da[n1 + 1, mll - g)
- (caln; + 1, m] - B (caln, + 1, m1 - £) (39)

where a[n; + 1, m;] is given in Eq. (32), and where g and f are the vector

representations of the old and new rows, respectively:

Fs(no,mo) 7] Fh(nl + 1, mg) ]
s(ng, my + 1) s(n) + 1, my + 1)
g " . N f = . N (40)
_3(“0’m1) | Ls(n1 +1, m)

and where C = Aj and D = A, with Aj the N x (PQ - 1) matrix given in
Eq. (33b). Woting the similarity of Bq. (40) with Eq. (8), we can write the
solution aln; + 1, m] which minimizes E{n, + 1, m,] as

T

ala, + 1, m] = (R~ clc + p'p)”! (s¥q + bTg - cTE] . (1)

Now, we can simplify Eq. (41) as

a[u1 + 1, mll = (R ~ GTF}-1 (STO + GTQ] (42)
where
-PQ -~ l» -p( - i
D f D ?
G= 2N F = 2N
¢ J4 Pt
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and where

Following our derivation in Sec. 2,1.2, we then have the recursive

computation of aln; + 1, m]:
a[n1 + 1, mll - a[nl,mll + K(Q - Fa[nl,mll) (43)

where K is given by Eq. (14) and R~} can be recursively updated as in
Eq. (18).

The matrix computation involved in finding K can be represented as (with
L=pQ-1):

o= [N e 2N ——
-1
K= 1:. [n“] [GT]; [PR"GT . x] %u (44)

8o that K is an L x 2N wmatrix., The important point here is that the inverse
of 8 2N x 2N matrix is required to compute K, implying a number of operations
on the order of (N)? operations per image pixel - clearly intolerable for

wvindows of large exteant, Thus, unlike in the l-D case, a recursion based on

Eq. (43) may entail more computation than performing 2-D least-squared
directly through Eq. (35). Of course, we have not considered any special

structure in PR.IGT + I which may help to reduce computation,

An alternstive to this row-by-row rvecursion (which we promised to
briefly describe before leaving this section) is a "snake~-like" point-by-
point recursion illustrated in Pig. 10, To compute the parameter estimates
under the window in Fig, 9, we must perform N "little" recursions each of
which is 1=<D in nature, thus requiring the inverse of N 2 x 2 matrices [see
Bq. (14)]. Therefora, we are confronted with the trade-off between oane
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Fig. 10. A point-by-point 2-D recursion.

inverse of a large ZN x 2N matrix and N inverses of little 2 x 2 matrices -
clearly a significant reduction in computation. One other potencial
advantage of this point-by-point recursion is that it does not attempt to
predict an entire row on each astep. An implication of this property is that
if target detection reliss on a prediction error, a point-by-point recursion
may be more likely to detect very small~extent and/or closely spaced targets.
However, since N recursions are required for each pixel, our detection
function becomes threc-dimensional. Such speculation servea as a starting
point for future research,

For the present, however, we have put aside all recursive solutions aund
devised a detection algorithm based on direct computation of Bq. (35).
Nevertheless, 21l this discussion about recursions is useful since (ae we
shall see in the following section) it has provided ineight into the nature
of changes in the parmseter estimates across an image.
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2.2.3 Detection Functionals
Clearly, we can extend our l-D detection fuuctionals to 2-D. The
functional we have chosen to use (for the present) in the implementation of

2-D detection algorithms is the coefficient change fuactional given by

Clay,m] = (ala; + 1, ] = aln;,m D" Cala; + 1, @] = alay,m D) . 45)

. From Eq. (43), C[“l’mll can be written as
T N
. Clo,m, ] = {R(Q - Fa[nl.mll)} {r(Q - Fa[nl.mlj)}
e [n;,m]]T el[nl,mll
= K{———— x (46)
ey[ny,m] ey{ny,m]
where el[“l'mll is the error in predicting the new row with the old
coefficient estimates:
eI[nl,mll - Da[nl,mll ~-g . (47a)
and ezlnl,mzl is the ¢/ ror in predicting the old row with the old
coefficient estimates:
ezlnl.mll - Ca[nl.mll -f (47b)

Thus, C(n),m;] resembles a weighted sum of these prediction errors. It is
. important to note that since Eqs, (35) and (43) must yield the same result
(based, of course, on the same particular known segment of s(n,m)], in either
case (i,e., for either the recursive or uwonrecursive solution), cl“l'“l} can
be written as Eq. (46).
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Fig. 11. 2-D detection algorithm.

30

T e A ] N O




An alternative detection functional [analogous to the 1-D function
e;[n;] in Eq. (21)] is the prediction error e;[n;,m;]. At each pixel of an
image, we might congider abrupt changes in ej[n},m)]. If a target happens to
fall along the new row which just enters the 2-D (sliding) window's view, we
expect a large error in prediction at the target location along that row.
For similar arguments given in Sec, 2.1.3 for the 1-D case, this prediction
error may be more sensitive to targets of small extent than the coefficient
change function. FPFurthermore, in the case of images, noncausal prediction
may be more reasonable to attempt than the causal prediction given above,
Judging from our 1-D experiments of Sec. 2.1.4, detection based on e;[n;,n,]
(or its noncausal counterpart) holds promise, and thus serves as a possible
avenue of future research. lNowever, in the remainder of this report, we
shall investigate the use of the coefficient change function for detectiom.

2.2.4 The 2-D Target-Detection Algorithm

Our overall 2-D target-detection algorithm based on the coefficient
change functional is illustrated in Fig., 11, Hidden within this block
diagram are a number of important decisions. First, ®, represents the local
mean of s(n,m) under the sliding window w(n,m). As in the 1-D case (see
Sec. 2.1.5), in theory this mean level should be removed, although in
practice it was found to wmake little difference in the coefficient change
functional, (However, the coefficient estimates themselves may differ.)
Thus, m  was not subtracted from the data, although it was found useful at
times as an additional parameter within the detection functional.

Another decision (hidden within the "direct cstimation” box) iavolves
the choice of the shape and size of the prediction mask., Recall that our
derivations in the previous sections were restricted to a first-quadrant
quarter-plane mask. Since an image has no apparent directionality, &
quarter-plane mask may bias the coefficient estimates. Furtherwore, froam the
work of Ekstrom and wbodl,7 ve know that a quarter-plane mask (even infinite
in extent) is not sufficient to match an arbitrary power spectrum, wheress a

nonsymaetric half-plane mask is sufficient,
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Fig. 13, RADC image with targets.
{
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As illustrated in Fig. 11, before applying a threshold, we smoothed the
detection fuanctional with an FIR filter. This operation helped reduce the
number of false alarmg. The threshold choice was based on heuristics,
although we are currently considering an adaptive threshold (e.g., CFAR used
in radar). Finally, to create the target map, a 3 x 3 median filter was
applied to further reduce the false-alarm rate.

The following examples illustrate these counsiderations and also
demonstrate the success of detecting targets of small extent.

2.2.,5 Examples

In the following set of examples, we have appliad the 2-D nonrecursive
least-squares algorithm to the RADC image data which are composed of forests
and fields illustrated in Fig. 12. Anomalous regions in the photograph were
created by taking small areas (2 x 2, 3 x 3, and 4 x 4 pixels 1u extent) of
forested regions and tramnsplanting them to the field regions as depicted in
Fig. 13. The coefficient-change technique can find these anomalous areas in
spite of the use of the very low-order model with P = Q = 1 (i.e,, three
independent coefficients).

Pigure 14 illustrates the coefficient change function Eq. (45) (before
smoothing) based on a 5 x 5 sliding window” and a 2 x 2 first-quadraat
prediction mask., Wote that C[n,m] is largest at the three targets and at the
field-field and field-tree transitions., Figure 15 depicts c{a,m] based on a
2 x 2 second-quadrant prediction mask, The avaerage of Figs. 14 and 15 is
shown in Fig. 16 which appears to be an improvement over either of these two
functionals, i.e., the target and transition regions are more clearly
accentuated, A cross section of the original image (through the
2 x 2 target) and the courresponding cross section of the averaged C[n,n] are
illustrated in Figa. 17(a) and (b), respectively.

We might consider the average in Fig. 16 to be a rough approximatiocn to
a functional based on a nonaymmetric half-plane (NSHP) prediction mask.” A
comparison of a first-quadrant, second-quadrant, and a l2-coefficient NSHP

prediction mask is illustrated in Pig. 18. C[n,m) associated with this NSHP

¥All examples in this section are based on & 5 x 5 sliding window.
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Fig. 17(a). Cross secticn of RADC image in Fig. 13.
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Fig. 17(b). Cross sectiocn of detection functionsl in Fig. 16.
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Fig. 18. Comparison of different prediction waaks.
masik performed about as well as the average depicted in Fig. 16 in detecting
targets, although it seems to exhibit a poorer performance in detecting the
field-field transition.
Figures 19(a) and (b) depict the smoothed Clm,m] of Fig. 16 after
application of a 3 x 3 FIR smoothing filter, The result of thresholding and
median filtering to create the target mep is shown in Fig. 20 superimposed

on the original image. All three targets and the field-tree transition are
clearly detected.

These examples represent a subset of a large number of experiments
performed in 2-D based on the coefficient-change function. FPor exsmple, the
local mean level was not used in the experiments described above, but was
found in other examples t. enhance C{n,m] which was reflected in reducing the
false-alarm rate of the ta-get map. Other experimeats involved swoothing the
parsmeters a(n;,m;] with a Laplacian before computing Cln;,m;] (represents a
differencing operation in two directions), applying an exponential weight to

the windowed data before estimation (in order to emphasize certain regions),
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increasing and decreasing the window size, basing a detection functional on a

geometric mean squared change (rather than an arithmetic mean), incorporating

a variance measurement into the detection functional, etc. Ome problem in

all these studies involved the detection of anomalous areas in the tree data

of Fig, 12. Preliminary results indicate, however, that a 2-D extension of

- the use of the prediction error may have some advantages in such detection

problems over the coefficient-change function.
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